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Assessing a Bayesian Embedding Approach
to Circular Regression Models

Jolien Cremers and Irene Klugkist

Department of Methodology and Statistics, Utrecht University

Abstract

Circular data is different from linear data and its analysis therefore also re-
quires methods that are different from the conventional methods. In this paper
the Bayesian embedding approach to estimating circular regression models as pre-
sented in Nuñez-Antonio, Gutiérrez-Peña, and Escarela (2011) will be investigated,
by means of five simulation studies, in terms of performance, efficiency and flexi-
bility. In addition an empirical example of a regression model predicting teachers’
scores on the interpersonal circumplex will be used throughout the paper. From
the simulation studies we may conclude that performance is reasonable in most
situations and the method is deemed efficient and very flexible. Researchers should
however take care when using this method on extreme data and with the interpre-
tation of their results.

Keywords: circular data, regression, Bayesian methods, embedding approach

1 Introduction

Circular data is different from linear data in the sense that it contains information
about directions or angles. One may come across circular data in many fields of research.
Examples of circular variables include orientations of rock formations, migratory patterns
of birds, eye movement patterns and clock times. Within the field of social science, data
measured by circumplex measuring instruments is a type of circular data.

The analysis of circular data requires methods that are different from the con-
ventional methods for linear data. As an illustration of circular data and their need for
different methods we consider a dataset collected for the research of Mainhard, Brekel-
mans, Brok, and Wubbels (2011). This research is conducted in the field of educational
science and includes the scores of teachers from 48 classes on the interpersonal circumplex
as assessed by their students in the first week of the schoolyear (ACS). The interpersonal
circumplex consists of the two axes Agency and Communion. Agency summarizes the
aspects of status, power, dominance and control and Communion summarizes the as-
pects of solidarity, friendliness, warmth, and love (Horowitz & Strack, 2011). Figure 1
is a graphical representation of the interpersonal circumplex showing the two orthogonal
axes Agency and Communion and the scores of four teachers from our dataset on this
circumplex. The two axes split the depicted circle into four quadrants: the first is the
upper right quadrant which ranges from 0◦ to 90◦, the second ranges from 90◦ to 180◦,
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Figure 1: Plot showing the interpersonal circumplex with axes Agency and Communion, where the points
indicate the score of a teacher on the circumplex measured in degrees, the dashed line represents the
direction of the linear mean and the dotted line represents the direction of the circular mean.

etc. The dataset also includes, amongst others, the teachers’ self-perception of their score
(ACSSP), their experience measured in years (TEX) and a measure of extraversion (EV).
Table 1 shows scores of four teachers from the dataset on these variables. Note that a
circular outcome can be measured in degrees on a scale from 0◦ to 360◦, as in Table 1,
or in radians on a scale from 0 to 2π radians. Radians can easily be transformed into
degrees and vice versa.

The need for different methods can be illustrated by looking at the linear and cir-
cular mean of the scores of the first four teachers on the interpersonal circumplex (ACS,
see Table 1). The linear mean of these scores is computed by

(351.40◦ + 14.78◦ + 133.15◦ + 104.69◦)/4 = 151.01◦.

However, as can be seen from Figure 1, 151.01◦ is not the average direction of the scores of
the 4 teachers. The correct circular mean of the values takes into account the directional
nature of the data and is in this specific case computed by

tan−1
(

sin(351.40◦) + sin(14.78◦) + sin(133.15◦) + sin(104.69◦)

cos(351.40◦) + cos(14.78◦) + cos(133.15◦) + cos(104.69◦)

)
= 47.80◦

(Fisher, 1995).
In this paper regression models for circular data will be considered. In terms of

the example data outlined before this would imply predicting the score of a teacher on
the interpersonal circumplex by one or more linear or circular predictors (e.g. ACSSP,
TEX, EV). As for the computation of the mean of circular data, regression models with
a circular outcome need different estimation methods (Fisher, 1995). Mardia and Jupp
(1999) and Fisher (1995) provide an overview of frequentist methods to estimate circu-
lar regression models. More specifically, Fisher and Lee (1994) and Presnell, Morrison,
and Littell (1998) use Expectation Maximization algorithm techniques to obtain Maxi-
mum Likelihood estimates for multiple regression models with a circular outcome. The
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Table 1: Scores of four teachers on the interpersonal circumplex as assessed by their students and
themselves (measured in degrees), as well as the variables teaching experience (centered) and extraversion
(centered)

ACS ACSSP TEX EV

1 351.40◦ 23.25◦ -9.68 -1.02
2 14.78◦ 246.56◦ -4.43 -1.86
3 133.15◦ 176.78◦ -4.43 0.81
4 104.69◦ 121.31◦ 5.57 -0.19

downsides of frequentist methods are that they are more complex (Ravindran & Ghosh,
2011) and less flexible than Bayesian (sampling based) estimation methods for circular
regression models. Additional advantages of Bayesian methods are that no asymptotic
assumptions are required (Gill, 2008; Lynch, 2007), knowledge from previous research
can be included in the specification of priors, and that it is not possible to obtain out of
range parameter estimates (e.g. negative variance estimates).

Only a few Bayesian methods for estimating parametric circular regression models
are available in the literature. Gill and Hangartner (2010) and Rodrigues, Galvao Leite,
and Milan (2000) provide Markov chain Monte Carlo (MCMC) methods for circular re-
gression based on the von Mises distribution, which is directly defined on the circle. In
the literature, methods using distributions directly defined on the circle are referred to as
having an ‘intrinsic’ approach. Other approaches are the ‘wrapping’ and the ‘embedding’
approach which make use of wrapped distributions and projected distributions respec-
tively. Ravindran and Ghosh (2011) and Ravindran (2002) provide an MCMC method
for wrapped distributions. Nuñez-Antonio et al. (2011), Wang and Gelfand (2013) and
Wang (2013) provide models for a circular response based on the projected normal and
general projected normal distribution.

In this paper we investigate the Bayesian embedding approach as presented in
Nuñez-Antonio et al. (2011) in terms of performance, efficiency and flexibility by means
of simulation studies. Although Nuñez-Antonio et al. (2011) introduce the mathematical
model and develop a Bayesian sampler to estimate circular regression models, no system-
atic simulations to assess the quality of the method have been reported so far.

In Section 2, the model for the Bayesian embedding approach to circular regression
will be introduced. This will be done with reference to the Agency-Communion example
data introduced before. Sections 3 and 4 contain the methodology and results of the
simulation studies for one and multiple predictors. These are followed by Section 5 which
presents the interpretation and results from the model fit on the Agency-Communion
data. The paper will be concluded with a discussion of the performance, efficiency and
flexibility of the approach in Section 6.

2 The Model

In this section the Bayesian embedding approach will be introduced. First, the
idea underlying the embedding approach will be explained. Second, the model as used
in this paper will be introduced. Third, the Bayesian estimation method as used in the
sampler by Nuñez-Antonio et al. (2011) will be explained. Fourth and last, a regression
model to be fit onto the Agency-Communion data is introduced.
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2.1 The Embedding Approach

As used in this paper, the embedding approach assumes that the circular outcome
variable Θ has a projected bivariate normal distribution PN(θ|µ,Σ), where µ ∈ R2 is
a mean vector and Σ is a variance-covariance matrix. Throughout this paper we will
only consider projected normal distributions in which Σ is equal to the identity matrix,
I. To be able to understand how projecting a distribution works, imagine that we have
one bivariate normal outcome variable, Y ∼ N2(µ,Σ). Conceptually, we can imagine the
projection of this bivariate normal outcome variable on the unit circle as shown in Figure
2. The three plots in Figure 2 show datapoints from three bivariate normal distributions
with different mean vectors and an identity variance-covariance matrix, N2(µ, I). Lines
are drawn from each datapoint to the origin (0, 0) of the plot. The length of these lines
is referred to with ri for one datapoint θi, where i = 1, . . . , N and N is the sample size,
and r for the vector of all ri for one dataset. The intersections of these lines with the unit
circle can be interpreted as the datapoints of the circular outcome vector θ. In Figure 2
we observe that the datapoints of the circular outcome are closer together, and thus the
spread is smaller, for projected normal distributions with means further from the origin.

Projecting bivariate normal data on a circle is relatively easy and produces a cir-
cular outcome vector θ and a vector with distances to the origin r. However, when we
start with circular data the process is reversed. Imagine one circular outcome variable
measured in angles, the vector θ. Since the outcome variable is angular we might decom-
pose each datapoint θi into its sine component, sin(θi), and its cosine component, cos(θi),
and see those as a bivariate normal outcome. Figure 3 shows a unit circle with one angle,
θi, decomposed into a sine and cosine component. The distance of this point to the origin
is always 1 in a unit circle. However, the datapoints from the underlying bivariate normal
outcome can theoretically be located at any distance from the origin and we can thus not
easily obtain the r for a datapoint. In fact, we need a Bayesian method that treats this
distance as a latent variable. This method is introduced in Section 2.3.
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Figure 2: Three sets of bivariate normal data projected on the unit circle. From left to right the respective
mean vectors, µ, are: (1.5, 1.5), (3, 3), (4.5, 4.5). The lengths of the lines drawn from each datapoint
to the origin represent r and the intersection of the lines with the circle corresponds to the individual
values of the circular outcome vector, θ.
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Figure 3: An angular measurement on the unit circle decomposed into its sine and cosine component.

2.2 Circular Regression

In regression models, the projected bivariate normal distribution has the following
density (Nuñez-Antonio et al., 2011):

PN(θ|µ, I) =
1

2π
e−

1
2
||µ||2

[
1 +

utµΦ(utµ)

φ(utµ)

]
, (1)

where 0 < θ ≤ 2π, µ is the mean of the projected bivariate normal distribution with
identity variance-covariance matrix I. Furthermore, u is the vector (cos θ, sin θ)t, and
µ = Btx where x is a matrix with predictor variables and B = [β1,β2]. The two
components of B, β1 and β2, are vectors with regression coefficients. The fact that
B has two components means that the sine and the cosine of the outcome variable
can be predicted using different regression equations. Lastly, Φ(·) and φ(·) denote the
cumulative distribution function and the probability density function of the standard
normal distribution. The relation between the circular and bivariate normal outcomes is
defined as U = Y /R where U is a random direction, Y is a random bivariate normal
vector and R = ||Y || is the euclidean norm.

If we apply this to the Agency-Communion scores from the example dataset,
and assume these to come from a projected bivariate normal distribution, we may then
interpret the cosine of the combined score (the first component of u) as a score just on
the Communion axis and the sine of the combined score (the second component of u) as
a score only on the Agency axis. We can then compose separate regression equations for
the Communion and the Agency scores. The vectors with regression coefficients for these
two scores are referred to with β1 and β2 respectively.

2.3 Bayesian Estimation

In Bayesian analyses, prior distributions have to be specified for all the model
parameters. In the circular regression model, a normal prior is specified for the two
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components of the matrix B:

N(βj|βj
0,Λ

j
0) ∀ j = 1, 2, (2)

where βj
0 are prior values for the regression coefficients and intercept and Λj

0 is the prior
precision matrix of component j. In this paper an uniformative prior was selected in
which βj

0 = (0, 0) and Λj
0 = (0.0001, 0.0001). Since r is not observed, we consider a

latent variable R defined on (0,∞). This latent variable, together with the prior in (2)
and the likelihood of the data results in the following posterior:

f(θ, r|µ = Btx) = N2(ru|µ = Btx, I)|J |, (3)

where |J | = r is the Jacobian of the transformation y 7→ (θ, r), where y is bivariate
normal, and u = (cos θ, sin θ)t. The sampler that can be used to obtain estimates from
the resulting posterior was developed by Nuñez-Antonio et al. (2011). It contains the
following steps:

1. Starting values for the ri are chosen. In this paper they are set to 1.

2. The two components of B are sampled from their conditional posterior

f(βj|θ1, . . . , θn, r) = N(· |µj
F ,Λ

j
F ) ∀ j = 1, 2, (4)

where µj
F = (Λj

F )−1(Λj
0β

j
0 + (Xj)tyj), Λj

F = Λj
0 + (Xj)tXj and Xj is a design

matrix.

3. Using the estimates for the two components of B new ri are generated in a Metropolis-
Hastings step from

f(ri|θi,µi = Btxi) ∝ ri exp(−0.5r2i + biri), (5)

where 0 < ri < ∞ and bi = ut
iµi.

4. Steps 2 and 3 are repeated in MH-within-Gibbs sampler for a specified amount of
iterations. After the iterations are completed one should check whether convergence
has been reached. If there are problems with convergence one should run additional
iterations.

More detail on the method of sampling can be found in Nuñez-Antonio et al. (2011).

2.4 A Regression Model for the Agency-Communion Data

In this section a regression model will be specified for the Agency-Communion data
from the introduction. As outcome variable we choose the score of the teachers on the
interpersonal circumplex as assesed by their students in the first week of the schoolyear
(ACS). The regression equations for the two components of this outcome (Agency and
Communion) are specified using the teachers’ self assessed score on the interpersonal
circumplex (ACSSP), the variable teacher experience (TEX) and the extraversion measure
(EV). Since ACSSP is a circular variable we may split it up into its sine and cosine
components and use these as two separate predictors in the equation (Fisher, 1995).
Experience of a teacher is said to have an influence on the difference between students’
and the teacher’s own perception of the Agency-Communion score (Wubbels, Brekelmans,
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den Brok, & van Tartwijk, 2006). Extraversion is a Big Five personality trait that is
related to the interpersonal circumplex (DeYoung, Weisberg, Quilty, & Peterson, 2013).
It is hypothesized that scores of extravert teachers are located in the first quadrant of
the circle. For illustrative purposes, to create different regression equations for the two
components, EV will only be used in the regression equation for the Agency component.
The resulting regression equations are as follows:

µ1 = β1
0 + β1

1 cos(ACSSP) + β1
2 sin(ACSSP) + β1

3TEX

µ2 = β2
0 + β2

1 cos(ACSSP) + β2
2 sin(ACSSP) + β2

3TEX + β2
4EV

where µ1 is the predicted value for the Communion axis and µ2 is the predicted value for
the Agency axis. The results from the analysis of the data using this regression model
are reported in Section 5.

3 Simulations for One Predictor Models

In order to assess the performance, efficiency and flexibility of the method for
estimating circular regression models illustrated above, several simulation studies were
conducted. This section outlines the methodology and results of the first two studies
in which models with one predictor were investigated. For both studies 500 simulated
datasets were analyzed. The precise methods for simulation are outlined in Sections 3.1.1
and 3.2.1, for one linear and one circular predictor respectively.

In both studies the convergence of the parameter estimates in the separate designs
was checked before conducting simulations. Because of time considerations, designs in
which convergence was not reached at 5000 iterations were not included in the simulation
study. This is indicated with ‘Slow Convergence’ in Tables 2 and 3. One should note
that although some of the datasets in these designs with slow convergence did converge
within 5000 iterations, the majority of datasets did not do so. For the designs with slow
convergence, a couple of pilot simulations showed that most of them did converge after
10,000 iterations. In practice this means that data with the characteristics of the slowly
converging designs can be analyzed by using more iterations. In general, all designs in
which convergence was reached within 5000 iterations of the sampler did so after 500
to 750 iterations. Because convergence in these designs was reached well within 5000
iterations, it was decided to run fewer iterations in the simulation studies. All results are
based on 3000 iterations of the sampler of which a burn-in of 750 iterations is not taken
into account for the final estimates.

The bias, coverage and mean computation time (MCT) are reported for the de-
signs of both studies. Bias is the deviation of the posterior mean of the parameters from
the population value (Population − Estimated) averaged over the simulated datasets.
Coverage of the credible interval is the percentage of simulated datasets in which the
population value lies within the 95% credible interval of the posterior distribution. Com-
putation time is defined as the time it takes to analyze one sample from the population,
that is the time it takes to estimate the parameters for one simulated dataset in seconds.
These computation times per dataset are averaged over all simulated datasets from the
population to obtain the MCT. For the MCT one should note that this is not a very
precise measure because simulations were done on a laptop that sometimes also ran other
programmes.
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3.1 One Linear Predictor

3.1.1 Design

The first simulation study encompasses the situation in which one circular out-
come is predicted by one linear variable. The circular outcome vector (θ) was generated
by sampling N bivariate normal outcomes Y ∼ N2(µ = Btx, I) and subsequently pro-
jecting these bivariate outcomes on the circle by using the arctangent (tan−1). The vector
composing the predictor matrix (x) was sampled from a normal distribution N(µx, σx).

The parameters that were varied are: the sample size (N), the slope (β1
1) for the

regression equation predicting the cosine component of the outcome, the slope (β2
1) for

the regression equation predicting the sine component of the outcome, and the mean (µx)
of the predictor variable. Table 2 shows the chosen values. Each row in this table repre-
sents one design. The mean of the linear predictor was varied to be able to investigate
the influence of the variance of the circular outcome on the performance of the sampler.
As was shown in Figure 2, the mean of the circular predictor influences the variance of
the circular outcome. Increasing the values in the mean vector of the bivariate normal
outcome decreases the spread of the circular outcome variable. The values for the inter-
cepts (β1

0 and β2
0) and variance of the linear predictor (σx) were not varied and set to 0

and 1 respectively.

3.1.2 Results

The results for the simulation study with one linear predictor are shown in Table
2. We see that a part of the estimates for the intercepts and the regression coefficients is
biased. This bias is highest (2.41) in one of the designs with a small sample size and high
predictor mean. The results show that the sample size, population mean of the predictor
and population β value seem to influence the bias. First of all, the bias is highest for
lower sample sizes. Where changing from a sample size of 10 to 50, the bias decreases
a lot, it does not do so when changing from 50 to 100. In some of the estimates for the
intercepts for these higher sample sizes the bias disappears completely. The bias also
decreases with population β values and predictor means that are closer to 0.

In terms of coverage we see that it does not reach the desired 95% level in any of
the designs. Coverages lie between 76.4% and 94% and in general the coverage is better
for higher sample sizes, population β values that lie closer to 0, data with predictor means
closer to 0 and estimates with a lower bias.

In the last column of Table 2 the MCT is reported. It may be observed that
the computation time is higher for larger samples but does not seem to vary with other
parameters.

3.2 One Circular Predictor

3.2.1 Design

The second simulation study encompasses the situation in which one circular out-
come is predicted by one circular variable. When using a circular predictor, we take the
centered sine and cosine of this predictor as two separate variables in the regression equa-
tion. The circular outcome vector (θ) was generated by sampling N bivariate normal
outcomes Y ∼ N2(µ = Btx, I) and subsequently projecting these bivariate outcomes on
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the circle by using the arctangent (tan−1). The two vectors composing the predic-
tor matrix (x) are the centered cosine and sine components of a vector sampled from
VM(µcirc,x, κx); a von Mises distribution with circular mean µcirc,x and concentration pa-
rameter κx. This concentration parameter is analogous to a variance (Fisher, 1995).

The parameters that were varied are: the sample size (N), the slopes of the cen-
tered cosine (β1

1) and sine (β1
2) component of the circular predictor for the regression

equation predicting the cosine component of the outcome, the slopes (β2
1 , β2

2) for the
regression equation predicting the sine component of the outcome, and a value for the
concentration parameter (κx) for the circular predictor. Table 3 shows the chosen val-
ues, with each row representing one design. The concentration parameter of the circular
predictor was varied to be able to investigate the influence of the variance of the circular
outcome on the performance of the sampler. The values for the intercepts (β1

0 and β2
0)

and the circular mean (µcirc,x) were not varied and set to 0 in all designs.

3.2.2 Results

The results for the simulation study with one circular predictor are shown in
Table 3. We see that also in this study a part of the estimates for the intercepts and
the regression coefficients is biased. This bias is highest (3.50) in one of the designs with
a high concentration of the circular predictor and low sample size. The results show
that the sample size, concentration of the predictor and population β value influence the
bias. The bias is highest for lower sample sizes. When changing from a sample size of 10
to 50, the bias decreases a lot while most of the time it does not do so when changing
from 50 to 100. In the designs with a higher sample size the bias of the intercepts often
disappears. Furthermore, the bias decreases with population β values closer to 0 and
lower concentration. The bias of β1

1 and β2
1 is bigger than the bias of β1

2 and β2
2 for most

designs. This is likely to be caused by the fact that β1
1 and β2

1 are the centered cosine
components of the circular predictor while β1

2 and β2
2 are the centered sine components

of the circular predictor. Figure 4 shows that when using a circular mean of 0 for a
circular variable, the cosine component of the variable necessarily has less variation than
the sine component. Furthermore, with increasing concentration, the spread of the cosine
component decreases more rapidly than the spread of the sine component of the circular
variable. This may influence the bias and coverage of these parameters.

In terms of coverage we see that the lowest coverage reported is one of 69.2% and
the highest is one of 94.8%. The coverage is generally closer to 95% for designs with
higher sample sizes and for the sine component of the predictor. An improvement of
coverage with population β values closer to 0 or lower concentration is not apparent. We
also see that estimates with a lower bias generally show a better coverage.

The MCT is also reported for this study. Again, it may be observed that the
computation time is higher for larger samples but does not seem to vary with other
parameters.

3.3 Conclusions

Results from the previous two simulation studies have shown that there is a bias in
some of the parameter estimates. For the regression coeffiecients this bias is at best 10%
of the value of the population β. In most designs the bias and coverage are acceptable.
However, we have seen that the bias increases and the coverage is worse for designs with
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Figure 4: Two circles with data that have a lower (a) and higher (b) concentration on a circle, the dotted
and dashed line indicate the spread of the sine and cosine of the data.

a high concentration of the circular predictor and a value for the predictor mean further
away from 0. Since these parameters influence the concentration of the outcome variable
this means that in data with a highly concentrated variable the estimates produced by the
embedding approach and their credible intervals may deviate from the truth. Furthermore
the bias is bigger for smaller sample sizes, so also in small samples results produced by
the embedding aproach may be wrong.

4 Simulations for Multiple Predictor Models

In this section, the methodology and results for three simulation studies with mul-
tiple predictors are presented. The first of these is a study with two linear predictors,
the second a study with one circular and one linear predictor and the third a study with
different regression equations for the two components of the outcome. The parameter
values were chosen such that the combinations of parameters that gave relatively good
results in Section 3 would return in the studies with multiple predictors. This way it
could be investigated whether these combinations still gave good results when changing
the amount, type and combination of predictor variables.

Before simulations were run the convergence was checked for each design, as ex-
plained in Section 3. All results are based on 3000 iterations of the sampler of which a
burn-in of 750 iterations was not taken into account for the final estimates.

4.1 Designs

The simulation methods for the studies with multiple predictors are combinations
of the methods for the one predictor models described in Sections 3.1.1 and 3.2.1. The
parameters that were varied are the sample size (N) and the slopes. In all designs the
mean of the linear predictors (µx), the mean of the circular predictos (µcirc,x) and the va-

12
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lues for the intercepts (β1
0 and β2

0) were set to 0. The concentration of the circular pre-
dictors (κx) and the variance of the linear predictor (σx) were set to 2 and 1 respectively.
In the study with two linear preditors, the slopes (β2

1 , β2
2) for the regression equation pre-

dicting the sine component of the outcome were varied (see Table 4). In the study with
one linear and one circular predictor, the slopes of the centered cosine component of the
circular predictor (β1

1), centered sine component of the circular predictor (β1
2) and linear

predictor(β1
3) for the regression equation predicting the cosine component of the outcome

and the slopes (β2
1 , β2

2 , β2
3) for the regression equation predicting the sine component of

the outcome were varied (see Table 5). The sample size in this study was not varied and
is equal to 50 for each design. Lastly, in the study with different regression equations for
the two components of the outcome the slopes of the centered cosine component of the
circular predictor (β1

1), centered sine component of the circular predictor (β1
2) and linear

predictors (β1
3 , β1

4) for the regression equation predicting the cosine component of the
outcome and the slopes (β2

1 , β2
2 , β2

3 , β2
4) for the regression equation predicting the sine

component of the outcome were varied (see Table 6).

4.2 Results

The results of the studies with multiple predictors are shown in Tables 4, 5 and 6
and show the same patterns for the bias as observed in the studies with one predictor.
The bias is highest for lower sample sizes and it increases with population β values further
away from 0. The MCT for the studies with multiple predictors shows the same patterns
as in the studies with one predictor, the computation time is higher for larger samples.

In the study with two linear predictors (Table 4) the coverage does not reach
the desired 95% level in any of the designs. The highest coverage reported is one of
94.2% and the lowest one of 72.4%. In general the coverage is highest in a sample size
of 100. The coverage decreases with population βs further from 0 when holding the
sample size constant. In the study with one circular and one linear predictor (Table 5)
the results show the same patterns in coverage as the previous studies. The coverage is
mostly smaller for values of the population β further from 0. We additionally see that the
coverage for the cosine components of the circular predictor (β1

1 and β2
1) is in almost all of

the cases slightly lower than the coverage of the sine components of the circular predictor
(β1

2 and β2
2). In the study with different regression equations for the two components

of the outcome (Table 6) the results show similar patterns in coverage as the previous
studies. The coverage is smaller for values of the population β further from 0 in most
cases.

4.3 Conclusions

Results from the previous studies have shown that there is no notable difference
in patterns of bias and coverage between models with multiple predictors and models
with one predictor. The bias and coverage are acceptable in designs with a value for
the population regression coefficient closer to 0 and do not worsen if more and different
combinations of predictors are included in the model. This is useful to know as in practice
the models investigated in this section show more resemblance, in terms of the amount
of predictor variables, to the models estimated to answer empirical research questions.
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5 Estimation for the Agency-Communion data

In this section the results of the analysis in which the regression model from Sec-
tion 2.4 was fit on the Agency-Communion data are presented and interpreted. Teachers
with missing values on any of the variables were removed resulting in a sample size of 43.
Convergence was reached within 750 iterations. After substracting a burn-in of 750 from
a total of 5000 iterations the results in Table 7 were obtained.

The posterior means of the coefficients from the third column of Table 7 tell us
more about the linear relations between the predictors and the two outcome components.
Figures 5a, 5b, 5c and 5d show the relation by plotting the predicted linear outcome com-
ponents Agency and Communion against various values of one of the predictor variables.
The other predictors are kept constant at their means in the data. The coefficients for the
two linear components can be interpreted as usual. For extraversion this interpretation
is: ‘An increase of 1 unit on the variable Extraversion leads to a 0.34 increase in predicted
score on the Agency component’.

The last two columns of Table 7 show the lower and upper bounds for the 95%
credible intervals. The interpretation of these is that the probability that the regression
coefficient lies within these intervals is 95%. Only for the coefficients Communion Self
Perception for the Communion component and Teacher Experience for the Agency com-
ponent the credible intervals do not include zero and indicate that there is an effect.

To interpret the coefficients in a circular context and thus combine the coefficients
of both components is less straightforward. To visualize what happens if we combine
the outcome components Figures 5e, 5f, 5g and 5h were constructed. Here the predicted
circular outcome is plotted against various values of one of the predictor variables. The
other predictors are kept constant at their means in the data. The circular outcome was
obtained by using the arctangent of the ratio of the two linear outcomes and transforming
this to a measure in radians. For the circular relation plots of Figure 5 the slope is not
constant indicating that the relation between outcome and predictor is not linear. This
means that a change between two values of the predictor variable may induce a bigger or
smaller change in the outcome than a change between two other values of the predictor
variable. For a more detailed interpretation we may take a look at Figure 6. This figure
is equivalent to Figure 5e but has a smaller range on the predictor variable axis. We see
that the difference between a score of 1 and a score of 2 on Communion Self Perception
in terms of the predicted outcome is larger than the difference between a score of 99 and
100.

Table 7: Mean and the lower and upper bounds for the 95% credible interval (CI) of the posterior
distributions of the intercept and coefficients for the Agency-Communion data

Parameter Posterior Mean Lower Bound CI Upper Bound CI

Communion

Intercept 0.37 -0.03 0.77
Communion Self Perception 0.54 0.06 1.01

Agency Self Perception -0.13 -0.68 0.42
Teacher Experience -0.02 -0.06 0.02

Agency

Intercept 1.66 1.16 2.20
Communion Self Perception 0.28 -0.36 0.89

Agency Self Perception 0.50 -0.15 1.19
Teacher Experience 0.10 0.04 0.15

Extraversion 0.34 -0.01 0.70
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Figure 6: Predicted circular outcome in radians plotted against different values of the predictor variable
Communion Self Perception.

6 Discussion

In the current paper the Bayesian embedding approach to circular regression as
introduced by Nuñez-Antonio et al. (2011) has been investigated by means of simulation
studies. In this section the performance, efficiency and flexibility of the approach will
be discussed and the consequences this has for researchers employing the embedding ap-
proach will be described.

Concerning the flexibility of the Bayesian embedding approach we may look at
several aspects. With regards to the types of regression models it can estimate the ap-
proach is very flexible. Both circular and linear predictor variables may be included in the
model. Although not discussed in this paper, categorical predictors may also be included
by means of creating dummy variables. The effects may then be interpreted by comparing
predicted outcomes for persons with and without a score of 1 on these dummies. Further-
more, the two components of the outcome may be predicted by different combinations of
variables. Applied researchers who have theories that indicate that one component of a
circular outcome may be predicted by different variables than the other component can
thus use this method. In terms of interpretation however, the embedding approach may
have limited flexibility. Whereas it is straightforward to estimate regression coefficients
for two components separately, combining them leads to more complex interpretations.
How useful this approach is to applied researchers depends on their specific theoretical
interests. When interested in the separate effects on the predictors on the two compo-
nents of the circular outcome this approach will meet their needs. When interested in a
circular interpretation of the effects however, the dependence of its size on the predictor
values will complicate interpretation and researchers will have to take care to interpret
effects correctly.

From the results of the simulation studies, we may reach several conclusions re-
garding performance. All of the designs investigated in the simulation studies show bias
in the estimated parameters. This bias is dependent on the size of the parameters to
be estimated, the sample size, the concentration of the circular predictor, and the mean
of the linear predictor. The coverage of the 95% credible interval of the posterior dis-
tribution of the estimated parameters shows the same, but less strong, pattern as the
bias. Because bias and coverage depend on what kind of data is investigated, researchers
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should inspect their data carefully before using the embedding approach as described in
this paper. If data is too highly concentrated on the circle or has a too small sample size
the embedding approach will produce biased estimates that have a low coverage.

Regarding efficiency, for most of the designs, the Bayesian sampler that was used
converged well within 750 iterations. The designs that took longer than 5000 iterations
to converge were those with a high concentration of the circular predictor, with means
of the linear predictor further from 0 or with small sample size. Regarding computation
time, the time it takes to analyze one dataset is reasonably low and is higher for designs
that have larger sample sizes.

In conclusion, the Bayesian embedding approach to circular regression as intro-
duced by Nuñez-Antonio et al. (2011) has a reasonable performance in sample sizes from
about 50. Researchers should take care when analyzing data with very high concen-
trations of the circular outcome and small sample sizes since in these cases using the
approach may result in estimates that contain a sizeable bias. Regarding efficiency and
flexibility this approach performs rather well. Estimation time and convergence is fast
and with regard to types and amount of predictors that can be included in the regression
equations the method is as flexible as possible. A situation in which this approach is not
that flexible is when circular effects are interpreted. These effects cannot be computed
and interpreted as straightforwardly as the linear effects for the two separate components
of the circular outcome.
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