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Extending Bayesian analysis of circular data

to comparison of multiple groups

Kees Mulder ∗ and Irene Klugkist †

Abstract. Circular data are data measured in angles and occur in a variety
of scienti�c disciplines. Bayesian methods promise to allow for �exible analysis of
circular data, for which few methods are available. Three existing MCMC methods
(Gibbs, Metropolis-Hastings, and Rejection) for a single group of circular data were
extended to be used in a between-subjects design, providing a novel procedure to
compare groups of circular data. Investigating the performance of the methods
by simulation study, all methods were found to overestimate the concentration
parameter of the posterior, while coverage was reasonable. The rejection sampler
performed best. In future research, the MCMCmethod may be extended to include
covariates, or a within-subjects design.

Keywords: circular data, Bayesian inference, mcmc methods, gibbs, metropolis-
hastings, rejection sampler

1 Introduction

Circular data are data measured in angles or orientations in two-dimensional space.
For example, one may imagine directions on a compass (0◦ − 360◦), times of the day
(0−24 hours), or directions on a circumplex model, such as Leary's Circle (Leary 1957).
Circular data are frequently encountered in many scienti�c disciplines, such as biology,
social sciences, meteorology, astronomy, earth sciences, and medicine.

The analysis of circular data requires special directional statistical methods due to
the periodicity of the sample space. For example, two angles of 10◦ and 350◦ di�er by
only 20◦, while if treated linearly the distance between them would seem to be 340◦. A
similar mismatch occurs for the arithmetic mean of 10◦ and 350◦, which is 180◦, while
their correct circular mean is 0◦.

Three di�erent approaches for analysis of circular data are discussed in the litera-
ture: the intrinsic approach, which uses the von Mises distribution (Von Mises 1918;
Damien and Walker 1999); the embedding approach, which uses the Projected Normal
distribution (Nunez-Antonio and Gutierrez-Pena 2005); and the wrapping approach,
where distributions on the real line are wrapped around the circle (Ferrari 2009). Here,
the scope is limited to the intrinsic approach.

Due to the di�culty of working with a circular sample space, few methods have
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2 Bayesian between-subjects circular data analysis

been developed in the �eld of analysis of circular data. An overview of available fre-
quentist methods for analysis of circular data can be found in Fisher (1995) and Mardia
and Jupp (1999). Bayesian methods o�er a promising new approach not only in the
�eld of statistics at large, but also speci�cally in the analysis of circular data. Main
advantages of the Bayesian approach are the �exibility of Markov chain Monte Carlo
(MCMC) methods used in Bayesian analysis, the lack of asymptotic assumptions, and
the possibility to incorporate knowledge from previous research. Some work has been
done performing Bayesian estimation on circular data without utilising MCMC methods
(Dowe et al. 1996), but such methods only perform point estimation without providing
standard errors, while researchers are often interested in drawing inference.

In the case of directional statistics, MCMC methods may prove to be a �exible so-
lution to the di�culty of drawing inference from circular data. A limited number of
MCMC methods for circular data have been developed. Available methods generally
employ the von Mises distribution, which is the natural analogue of the normal dis-
tribution on the circle. Early work by Damien and Walker (1999) provided a Gibbs
sampler for a single group by adding latent variables to the model. Metropolis-Hastings
algorithms have been developed for circular distributions in general (Bhattacharya and
Sengupta 2009) and for the von Mises-Fisher distribution, which is the generalization
of the von Mises distribution to the sphere (Nunez-Antonio and Gutiérrez-Pena 2005).
Recent work has attempted to tune the parameters of a rejection sampling algorithm
in order to obtain a computationally fast method to sample from the posterior of a von
Mises distribution (Forbes and Mardia 2014). Although di�erent in approach, these
methods have in common that they draw from the posterior of the von Mises distri-
bution given one group of circular data, which can be used to describe properties of a
single sample. None of the methods may be used to compare groups.

In this paper existing MCMCmethods will be extended to analyse data from between-
subjects designs, where the research goal is to compare mean directions of multiple
groups on a circular outcome. Many tests in between-subjects designs, such as ANOVA,
assume equal variance across groups. Circular ANOVA methods that have been devel-
oped in a frequentist framework also carry this assumption (Harrison and Kanji 1988;
Harrison et al. 1986). A main aim of this paper is thus to extend available MCMC
methods to between-subjects designs, so that the method samples multiple mean direc-
tions and a single measure of dispersion. Then, the performance of these methods will
be assessed to decide which is the most commendable.

Section 2 provides the theoretical framework and notation for the von Mises dis-
tribution. Then, in Section 3, three MCMC methods are discussed and extended to
between-subjects designs. These are compared by means of a simulation study in Sec-
tion 4. Concluding remarks will be made in Section 5.

2 The intrinsic approach

The MCMC methods discussed in this paper all fall within the intrinsic approach, where
it is assumed that the data follow the von Mises distribution. This section will discuss
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basic properties of the von Mises distribution and provide a framework for the MCMC
methods that will be discussed in Section 3. The �rst four sections will be restricted to
the von Mises distribution for a single group, while Section 2.5 will introduce properties
and notation to be used in the case with multiple groups.

2.1 Von Mises distribution

The von Mises distribution is a symmetric unimodal distribution, which is given by

VM(θ|µ, κ) = {2πI0(κ)}−1 exp{κ cos(θ − µ)}, 0 ≤ θ < 2π, κ ≥ 0

where θ represents the data, µ represents the mean direction, κ is the concentration
parameter, and I0(·) is the modi�ed Bessel function of order 0 (Abramowitz and Stegun
1972). A higher κ represents less variation, and thus more concentrated data. Let
θ = (θ1, . . . , θn) be a sample of angular measurements θi of size n.

Each angle in the dataset may be viewed as a vector of length 1 in direction θi. As
illustrated in Figure 1, the summation of these vectors results in a vector in direction θ̄
of length R. θ̄ is an unbiased estimator of µ, while R is called the resultant length and
may be obtained from

R =

√√√√( n∑
i=1

cos θi

)2

+

(
n∑
i=1

sin θi

)2

,

which increases with concentration and sample size. The mean resultant length can be
computed as R̄ = R/n, which is a metric of concentration independent of the sample
size.

2.2 Prior distribution

Guttorp and Lockhart (1988) present a conjugate prior for the von Mises distribution.
It is given up to a constant of proportionality by

p(µ, κ) ∝ I0(κ)−c exp{R0κ cos(µ− µ0)},

which represents c observations with prior mean direction µ0 and prior resultant length
R0. In all methods applied in this paper, this conjugate prior will be used.

2.3 Posterior distribution

To obtain the posterior distribution, the data and the prior are combined to obtain the
posterior mean µn

1 and the posterior resultant length Rn by

Cn = R0 cosµ0 +

n∑
i=1

cos θi, Sn = R0 sinµ0 +

n∑
i=1

sin θi,

1In R (R Development Core Team 2013), calculation of µn is readily available in atan2(Sn, Cn).
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Figure 1: Illustration of the mean direction and resultant length of θ = {56◦, 77◦, 344◦}.
The summation of the vectors results in a vector of length R in direction θ̄.

µn =

 tan−1(Sn/Cn) if Cn > 0, Sn > 0
tan−1(Sn/Cn) + π if Cn < 0
tan−1(Sn/Cn) + 2π if Cn > 0, Sn < 0

and

Rn =
√
C2
n + S2

n.

Then, the joint posterior distribution is given up to a constant of proportionality, by

f(µ, κ|θ) ∝ {I0(κ)}−m exp{Rnκ cos(µ− µn)},

where m = n+ c. This distribution is not of closed form due to the Bessel function.

2.4 Conditional distributions

The MCMC methods presented in Section 3 are based upon the conditional posterior
distributions f(µ|κ,θ) and f(κ|µ,θ). The conditional posterior distribution of µ, up to
a constant of proportionality, is given by

f(µ|κ,θ) ∝ exp{Rnκ cos(µ− µn)},

which is the kernel of a von Mises distribution with mean direction µn and concentration
parameter Rnκ. Several straightforward methods to sample data from the von Mises
distribution are available (Best and Fisher 1979; Fisher 1995).

The conditional distribution of f(κ|µ,θ), is given by

f(κ|µ,θ) ∝ {I0(κ)}−m exp{Rnκ cos(µ− µn)}.
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However, it is not straightforward to sample from this conditional distribution, so that
special methods are required. In Section 3, three methods that can sample the concen-
tration parameter will be discussed.

2.5 Notation for multiple groups

Here, basic notation and properties will be de�ned that will be used to extend the
methods discussed in Section 3 to multiple groups. Denote the groups by j = 1, . . . , J .
Then, for group j, the posterior mean is denoted by µnj and the posterior resultant
length by Rnj . The sample size of group j is denoted by nj , which will be combined
with the prior property cj to obtain mj = nj + cj . Finally, let

Rt =
J∑
j=1

Rnj and mt =
J∑
j=1

mj .

Utilising this notation, the posterior for multiple groups with a common κ is given
by

f(µ, κ|θ) ∝ {I0(κ)}−mt exp

κ J∑
j=1

Rnj cos(µj − µnj)

 ,
where µ = (µ1, . . . , µJ) denotes the mean directions of the groups.

3 Available methods and their extensions

In this section, three MCMC methods will be presented and extended to be able to
sample from the posterior of a von Mises distribution in a between-subjects design with
J ≥ 1 independent groups with common but unknown κ. Importantly, all three methods
use the conjugate prior as described in Section 2.2.

3.1 A Gibbs sampler using latent variables

In one of the earliest attempts at sampling the concentration parameter of the von Mises
distribution, Damien and Walker (1999) provide a Gibbs sampler that only requires
sampling of uniform random variates. It is an application of the procedure of adding
latent variables to a posterior distribution in order to be able to apply Gibbs samplers
in situations where this may not have been feasible originally (Damien et al. 1999).

Although the relative simplicity of the Gibbs sampler usually is appealing, it has
been noted that this sampler shows high autocorrelation for more concentrated data,
causing slow convergence (Nunez-Antonio and Gutiérrez-Pena 2005, p. 990).

Damien and Walker (1999) add latent variables w, v, x, and u = (u1, u2, . . . ) to the
joint posterior density f(µ, κ|θ), where u is an in�nite set of latent variables. It is not
necessary to sample an in�nite number of values for uk, as computing values for uk
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up to some su�cient k provides a good approximation of the correct solution. Let Z
be the number of values of uk that will be sampled, so that the set of sampled values
is u1, . . . , uZ . For each analysis performed with this method, a value for Z must be
chosen. This is a disadvantage of this method, because setting Z too high will prove
computationally intensive, while setting Z too low produces biased results.

Another disadvantage is that this method requires setting starting values not only
for µ and κ, but also for w. However, w does not have an intuitive interpretation,
making the choice of a starting value somewhat arbitrary and possibly di�cult.

Sampler for a single group

The posterior density of a single group, after inclusion of the latent variables, is given
up to a constant of proportionality as

f(µ, κ,w, v, u, x|θ) ∝ e−RnκI(v < eRnκ{1+cos(µ−µn)}, x < wm−1)×(
e−w

∞∏
k=1

I(uk < e−wλkκ
2k

)

)
,

for which the marginal for (µ, κ) is f(µ, κ|θ), as required. The Gibbs sampler works
by drawing a value from the conditional distributions of x, v, µ, uk, w and κ in sequen-
tial order, each conditional on the current other values. Further details, including the
required conditional distributions, are found in Damien and Walker (1999) and will not
be given here, as the Gibbs sampler for a single group is a special case of the Gibbs
sampler described next with J = 1.

Sampler for multiple groups

This section will describe the adapted procedure to implement the Gibbs sampler for
multiple groups, so that it will sample from the posterior density f(µ, κ, w, v, u, x|θ).
It di�ers in two ways from the sampler provided in Damien and Walker (1999): �rst,
means for multiple groups and a common κ are now sampled, and second, some steps
were combined or simpli�ed to facilitate implementation. Notably, the sampling of a
set of values u1, . . . , uZ is rewritten to sample another set of values N1, . . . , NZ . The
extended Gibbs sampler consists of the following 8 steps:

1. Set µ, κ, and w to their starting values.

2. Draw a random variate τ from U(0, 1).

3. For each group j, draw a value for µj from U(µnj− cos−1 g, µnj +cos−1 g), where

g = max

[
−1,

ln τ

Rtκ
+

∑J
j=1Rnj{1 + cos(µj − µnj)}

Rt
− 1

]
.
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4. CalculateM = w̃+E, where w̃ is the current value of w and E is a random variate
drawn from an exponential distribution with rate I0(κ)− 1.

5. Draw a new value for w from e−wI(w̃r1/(m−1) < w < M), where r is a uniform
random variate from U(0, 1).

6. ComputeNk = κ(1+Fk)1/(2k), where Fk is an exponential r.v. with rate w̃(k!)−2(0.5κ)2k,
and k = 1, . . . , Z. Set N = minNk. For advice on setting Z, see Section 3.1.

7. Draw a value for κ from e−RnκI(max{0, vn} < κ < N), where

vn =
ln τ∑J

j=1Rnj{1 + cos(µj − µnj)}
+ κ.

8. Repeat steps 2 - 7 until a su�cient number of samples have been obtained.

Choosing Z

In step 6 of the procedure given above to draw from the conditional density of κ, a
number of samples Nk are generated of which the smallest is retained. However, the
number of Nk that should be sampled (here denoted by Z) was not discussed in Damien
and Walker (1999). A small simulation study was performed to be able to give guidelines
for setting Z when applying this algorithm.

For each combination of sample sizes {5, 30, 100} and concentrations {0.1, 1, 4, 8},
100 datasets with J = 1 and J = 3 were generated. The Gibbs sampler was then run
for 10000 iterations with no lag and a burn-in of 500 on each dataset, with Z set to
85. In each iteration, the index number k of the selected (smallest) value for Nk was
saved. This resulted in 100 chains (one for each dataset) of chosen index number k
of 10000 iterations. Then, the overall maximum value of these chains was taken. The
reasoning behind this is that if in all these iterations the chosen value never exceeds
some number, setting Z to that number or slightly above it will ensure that Z is not
too low to produce bias while still remaining somewhat computationally e�cient.

From the results, given in Table 1, it is apparent that a value for Z of about 25 should
be su�cient in most applications, assuming the data is not strongly concentrated. The
required Z decreases with higher sample sizes and less concentrated data.

3.2 A Metropolis-Hastings sampler

Another approach is to employ the Metropolis-Hastings (MH) method (Metropolis et al.
1953; Hastings 1970) to sample from the posterior of a von Mises distribution. Usu-
ally, MH algorithms are slower and encounter more autocorrelation and convergence
problems than Gibbs samplers. However, considering the complicated nature of adding
latent variables in the Gibbs sampler described above, an MH method may be advan-
tageous. Another advantage is that the algorithm is reasonably straightforward. On
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Table 1: Maximum k that was picked out as the smallest value after 10000 iterations of
the Gibbs sampler applied to 100 datasets for di�erent sample sizes (n), concentration
(κ) and number of groups (J).

J = 1 J = 3
Sample size Sample size

κ 5 30 100 5 30 100
0.1 11 5 5 7 5 5
1 14 6 6 8 5 6
4 25 10 8 14 8 8
8 25 12 11 14 9 7

the other hand, this method depends on a proper choice for the proposal density, which
may limit its use.

Sampler for a single group

To apply the sampler for a single group, samples are needed for a single µ and κ. The
conditional distribution of the mean direction µ is known and is easy to sample from
using a Gibbs step. The conditional distribution of κ is known but di�cult to sample
from, which will be solved by applying an MH step.

For the MH step, two main ingredients are required: the posterior from which sam-
ples are required, and a proposal density from which it is straightforward to sample.
The conditional posterior f(κ|µ,θ) is given in Section 2.4. As a proposal, which must be
non-negative, the χ2-distribution will be used. The full algorithm will not be presented
here as it is a special case with J = 1 of the sampler described next.

Sampler for multiple groups

The MH sampler for multiple groups may employ the posterior f(µ, κ|θ) as given in
Section 2.5. However, in order to prevent under�ow issues, the natural logarithm of the
posterior is used, which is

ln f(µ, κ|θ) = −mt [I0(κ)] + κ

n∑
i=1

Rnj cos(µj − µnj).

Let κcur be the current value of κ, and χ
2(x|h) be the chi-square distribution with

h degrees of freedom. Then, the MH method is given by the following 7 steps:

1. Set κcur to its starting value.

2. For each group j, draw a value µj from VM(µj |µnj , Rnκcur).

3. Draw a candidate κcan from χ2(κcan|κcur).
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4. Calculate the MH ratio as

a = ln f(κcan|µ,θ) + lnχ2(κcur|κcan)

− ln f(κcur|µ,θ)− lnχ2(κcan|κcur),

where µ = µ1, . . . , µJ , a vector of current values of µ for each group.

5. Draw a value u from U(0, 1).

6. If a > lnu, set κcur = κcan. Elsewise, remain at κcur.

7. Repeat step 2 - 6 until a su�cient number of samples have been obtained.

3.3 A rejection sampler

In a recent paper, Forbes and Mardia (2014) presented a promising new algorithm to
sample from the conditional posterior f(κ|µ,θ). The approach is largely focused on
computational speed, and was motivated by the fact that plugging a Bessel function
approximation into the von Mises posterior leads to a Gamma distribution.

First, the algorithm sets η = n and computes β0 = −n−1
∑n
i=1 cos(θi − µ). These

are then used to compute the approximately optimal parameters for a Gamma proposal,
such that the probability of rejection is minimized. In the rejection step, a candidate
for κ is then repeatedly drawn from this Gamma proposal density until it is accepted.

Samples of µ are drawn outside of the algorithm, which may be done easily as in
step 2 of the MH procedure in Section 3.2. As with the MH method, only κ requires a
starting value.

Sampler for a single group

In their paper, Forbes and Mardia (2014) describe the rejection sampler for a single
group of data, using a constant prior. The conjugate prior that is preferred here can be
added as described below.

Using the sample mean direction θ̄, it can be shown that

β0 = −n−1
n∑
i=1

cos(θi − µ) = −R cos(µ− θ̄)
n

.

This relation to the resultant length means that µn, Rn, andm from the desired posterior
can be plugged into the formula for β0, to obtain

βn = −Rn cos(µ− µn)

m
.

Then, the rejection algorithm can be applied exactly as given in Forbes and Mardia
(2014), using βn instead of β0 and η = m.
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Sampler for multiple groups

As the sampling of means occurs outside of the main algorithm, it is straightforward to
sample separate means for each group. However, the common κ depends on the sampled
means through βn. After computation of βn, the rejection algorithm no longer uses the
data θ or the current value of µ. The sampler will thus be extended to multiple groups
by once again rewriting βn.

Using Rnj and µnj , and mt as before, let

βt = −
∑J
j=1Rnj cos(µ− µnj)

mt
.

Then, the rejection algorithm can be applied using βt instead of β0 and η = mt.

4 Simulation study

In the previous section, three distinct methods to sample from the posterior of the
von Mises distribution with multiple groups were shown. In this section, these three
methods will be evaluated on their performance and e�ciency.

4.1 Methods

All three methods were implemented in C++ within R (R Development Core Team
2013) via Rcpp (Eddelbuettel and François 2011). To illustrate the di�erences between
the three methods, Figure 2 shows example chains of the �rst 500 iterations for each
of the three methods. It can be seen that the Gibbs sampler has large autocorrelation
and slow convergence, that the MH algorithm can have low acceptance probability but
converges fast, and that the rejection algorithm converges fast and mixes well.

The three sampling methods were applied to various scenarios, which di�ered in the
following three properties. First, the samplers analyzed both a single group of data
(J = 1) and three groups of data (J = 3). Second, sample sizes of 5, 30 and 100 were
used. For J = 3, this sample size denotes the sample size per group (nj), making the
total sample size 3nj . Third, values for the concentration parameter κ were 0.1, 4 and
32. Because the multiple groups are assumed have equal κ, all three groups of data were
sampled given the same true κ. These manipulations resulted in a 3x2x3x3 simulation
study design, for a total of 54 cells. For J = 1, the true mean was set at 20◦, while true
means for J = 3 were set at 20◦, 40◦, and 60◦.

For each cell, a thousand datasets were generated, each of which was analyzed with
each sampler. Burn-in and lag (that is, how much the chain will be thinned) were set
to appropriate values (see Section 4.2), after which the �rst 10000 retained iterations
of both µ and κ were saved. Although all three methods allow inclusion of prior infor-
mation, a non-informative prior was used throughout the simulation study by setting
µ0 = 0, R0 = 0, and c = 0. Each method requires a starting value for κ, which was set



K. T. Mulder and I. G. Klugkist 11

0 100 200 300 400 500

15
0

25
0

35
0

45
0

Gibbs
m

u

0 100 200 300 400 500

15
0

25
0

35
0

45
0

MH

0 100 200 300 400 500

15
0

25
0

35
0

45
0

Rejection

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ka
pp

a

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: Example chains of µ and κ drawn in the �rst 500 iterations of each of the three
methods, with no burn-in and without thinning the chain, where J = 3, true κ = 0.1,
and nj = 30.

to 2 in all cases. The Gibbs sampler required additional starting values for µ and w,
which were set at 0 and 4 respectively, regardless of sample size or κ. Additionally, for
the Gibbs sampler an appropriate Z must be chosen (see Section 3.1), which was set to
85 throughout this study.

4.2 Convergence

As convergence is achieved at a di�erent number of iterations for each of the methods,
several runs of each were assessed for each cell in order to assess convergence and required
burn-in and lag, which were then set correctly for the simulation study.

The Gibbs sampler performed adequately for small samples with large dispersion.
For example, a single group of 5 datapoints with true κ = 0.1 produced a reasonable
sample from the posterior using a lag of 2, which means saving every other iteration.
With larger sample sizes and more concentrated data, the autocorrelation increases
quickly, requiring a lag of 250 for κ = 4 and nj = 100 with J = 3. For values of κ above
about 7, application of the Gibbs sampler simply becomes unfeasible, so results for the
Gibbs sampling method with true κ = 32 are not reported.
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The MH algorithm fared much better, converging quickly in all tested situations.
However, applying MH methods requires reasonable acceptance rates, which can be
computed by Qacc/Q, where Qacc is the number of accepted iterations, and Q is the
total number of iterations. Johnson and Albert (1999) suggest an acceptance rate of
about 50% to be ideal. A low acceptance rate may suggest a badly �tting proposal
density, while a high acceptance rate (ie. close to 1) may suggest that the algorithm
has yet to converge properly. As convergence was assessed seperately and achieved
quite quickly, only too low acceptance rates were of concern here. Acceptance rates
were lower for larger sample sizes and less concentrated data. For example, for a single
group of data with n = 100 and κ = .1 the average acceptance rate was .1, while for
n = 30, κ = 32 the acceptance rate was as high as .71. One exception to this pattern
was found: the smaller sample size for n = 5, κ = 32 should mean this cell would
have an even higher acceptance rate than .71, but it was in fact lower at .55. The
small sample size causes large di�erences in the concentration between datasets, so that
this cell contains some extremely concentrated datasets. Acceptance rates of the MH
algorithm were very low for these extreme concentrations.

The rejection algorithm converged immediately and showed almost no autocorrela-
tion. An acceptance rate can be computed by Q/Qcan, where Q is the total number of
accepted candidates, which was chosen beforehand as the desired number of iterations,
and Qcan is the total number of candidates, including those that were accepted. The
algorithm rejected no more than 5% of the candidates in any case, which is even closer
to 1 than the expected acceptance probabilities as given in Forbes and Mardia (2014).

4.3 Mode estimation for κ

Estimating κ as the mean or the median of the posterior sample may lead to biased
results, as κ is non-negative and has a right-skewed distribution. For skewed distribu-
tions, the mode usually provides the least biased estimate. An estimate of the mode
can be obtained by using the Highest Density Interval (HDI), which is the shortest
interval containing a certain percentage of the data (Venter 1967). Here, the mode was
estimated to be the midpoint of the 10% HDI.

4.4 Results

In Table 2 and 3, results are displayed for a single group and three groups, respec-
tively. As mentioned before, applying the Gibbs sampler to a situation with κ = 32 is
unfeasible, and therefore these rows are left empty.

The column below posterior µ mean gives the average of the posterior mean of µ
or {µ1, µ2, µ3} of all replications. The coverage of the mean denotes the proportion of
replications where 95% Central Credible Interval (CCI) contained the true µ. For J = 3,
this coverage was averaged over the three means. The desired value of the coverage is
.95. For the posterior κ, the estimated mode for each replication was saved, as well
as the 95% HDI. The average of the mode over replications is provided in the column
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Table 2: Average of posterior properties over 1000 replications for J = 1,
with true µ = 20◦, for di�erent sample sizes (n) and concetration κ.

Posterior µ Posterior κ a

n κ Method Mean Coverage Mode Coverage Acc. b MCT c

5 0.1 Gibbs 28.51 0.78 0.67 0.96 1 0.78
MH 28.34 0.78 0.63 0.96 0.33 0.04

Rejection 27.89 0.77 0.64 0.97 0.96 0.03

4 Gibbs 19.04 0.94 5.11 0.96 1 7.60
MH 19.01 0.90 9.83 0.93 0.63 0.04

Rejection 19.02 0.91 7.65 0.95 1 0.04

32 Gibbs � � � � � �
MH 20.07 0.80 133.12 0.64 0.55 0.05

Rejection 20.07 0.88 55.74 0.96 1 0.05

30 0.1 Gibbs 28.14 0.87 0.19 0.97 1 1.13
MH 28.68 0.88 0.18 0.97 0.16 0.07

Rejection 28.50 0.86 0.19 0.98 0.98 0.04

4 Gibbs 19.96 0.94 4.25 0.92 1 9.91
MH 19.96 0.94 4.26 0.94 0.36 0.08

Rejection 19.96 0.94 4.17 0.96 1 0.04

32 Gibbs � � � � � �
MH 20.04 0.93 34.71 0.95 0.71 0.08

Rejection 20.05 0.93 34.66 0.95 1 0.04

100 0.1 Gibbs 19.50 0.92 0.12 0.98 1 3.94
MH 19.76 0.92 0.11 0.98 0.10 0.17

Rejection 19.57 0.92 0.12 0.98 0.98 0.03

4 Gibbs 20.02 0.95 4.10 0.94 1 59.03
MH 20.02 0.95 4.11 0.95 0.21 0.17

Rejection 20.02 0.95 4.04 0.96 1 0.03

32 Gibbs � � � � � �
MH 19.97 0.95 32.87 0.92 0.53 0.16

Rejection 19.97 0.95 32.81 0.92 1 0.04
aPosterior κ mode denotes the mode as described in section 4.3. Coverage denotes

the proportion of replications in which the true κ fell within the 95 % HDI.
bAcceptance ratio. For Gibbs sampling, this is always 1. For Metropolis-Hastings,

Qacc/Q is given. For the rejection method, this is Q/Qcan.
cMean Computation Time of one replication in seconds.
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posterior κ mode, followed by the posterior κ coverage, which denotes the propotion
of replications for which the true value fell within the 95% HDI. The last two columns
provide the acceptance rate and the mean computation time (MCT) per replication in
seconds.

The true value of a parameter often in�uences the size of the bias. In order to
investigate by what factor estimates are o�, the relative bias can be calculated as
Bias/True value. The relative bias may help facilitate interpretation of relative severity
of bias for κ, in order to allow for more accurate comparisons between cells.

A single group

Posterior µ

All three methods provided similar results for the posterior mean, which was gen-
erally close to the true mean. Estimates were closer to the true value for increasing n
and increasing κ. The worst case was found for κ = 0.1, n = 5, where the di�erence
between the true µ (20◦) and average posterior µ was as high as 8◦. However, this
di�erence is most likely due to sampling error of datasets instead of an issue with the
MCMC methods. When κ = 0.1, the distribution of the sample mean direction θ̄ is
close to the circular uniform distribution, so that the average over the sample mean
directions shows some random variation. This is supported by the fact that the MCMC
methods all show the same di�erence from the true value. In general, there seems to be
no systematic bias in the estimation of the mean direction.

Coverage was generally adequate as well. Coverage for µ relies on correct procedures
of sampling both µ and κ. For example, an upwards bias in κ results in a lower coverage
for µ. Sampling methods for the distribution of µ are well-known and as such most
likely correct, and thus deviations of the coverage from .95 are likely due to a de�cient
mechanism to sample κ, as the current value of κ is used in the distribution of µ.

Posterior κ

The mode of κ shows a systematic upward bias for all cells and all methods. The
relative bias is worse for smaller κ and thus more dispersed data. The bias also decreases
with increasing n and nearly disappears for n = 100.

Regardless of the observed bias, coverage for κ was generally acceptable, �uctuating
around .95 for all methods. One exception was the MH algorithm with n = 5, κ = 32,
which performed particularly badly with an average mode for κ of 133.12 and a coverage
of .64. In this condition, many datasets have very high estimated concentrations, which
the MH algorithm does not handle well. The rejection algorithm performed much better
in this case, providing an adequate coverage of .96 even though the results were still
strongly biased with the average estimate of κ at 55.74.
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Figure 3: Coverages of κ for di�erent sample sizes (n) and concentration (κ), all with
J = 3.

Mean Computation Time

The �nal column denotes the computational time for the algorithms as implemented
in C++ via Rcpp, which was averaged over all replications. As with previous results,
the Gibbs sampling method performed worst by far. Its computational time increased
as more lag was required, which occured with higher sample sizes and concentration.
The longest reported time was 59.03 seconds per replication. The computation time for
the MH algorithm was independent of κ, but it did depend on n, becoming slower with
increasing sample size, although the maximum time a replication took was only about
.2 seconds. The rejection algorithm was very fast, as expected, and its computational
time was independent of both sample size and κ, so that it never took more than .05
seconds for a replication.

Multiple groups

In Table 3, results for analysis of multiple groups of data are shown. For the posterior
group means the observed pattern was similar to the single group case. Mean directions
for cells with low concentration and small sample size showed unsystematic bias, which
likely occured due to sampling error of the datasets. The Gibbs sampler showed coverage
for the posterior µ that was too low in all cells. For both the MH and rejection method,
coverage of µ was generally adequate with the exception of nj = 5, κ = .1 and nj =
30, κ = .1, for which coverage was observed to be too low. As explained previously, this
is likely due to a lacking mechanism to sample κ.

As with J = 1, a systematic bias was observed in κ for all methods, in particular
for nj = 5. For nj = 30 and nj = 100 much less bias was observed. Figure 3 shows
the coverages of κ per method for di�erent sample sizes and concentration, with J = 3.
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Table 3: Average of posterior properties over 1000 replications for J = 3, with true means
µ1 = 20◦, µ2 = 40◦, µ3 = 60◦, for di�erent samples sizes per group (nj) and concentration
(κ).

Posterior µ Posterior κ a

nj κ Method µ1 µ2 µ3 Coverage Mode Coverage Acc. b MCT c

5 0.1 Gibbs 21.97 52.40 64.60 0.52 0.79 0.75 1 1.18
MH 23.40 52.67 64.07 0.85 0.36 0.96 0.22 0.11

Rejection 23.23 52.39 63.80 0.85 0.40 0.97 0.98 0.05

4 Gibbs 20.94 39.34 59.95 0.69 5.39 0.89 1 20.13
MH 20.95 39.33 59.96 0.94 4.69 0.96 0.47 0.13

Rejection 20.95 39.34 59.96 0.94 4.57 0.97 1 0.06

32 Gibbs � � � � � � � �
MH 19.97 39.80 59.97 0.92 45.82 0.93 0.76 0.14

Rejection 19.97 39.80 59.97 0.92 38.37 0.95 1 0.06

30 0.1 Gibbs 32.41 33.81 61.85 0.60 0.30 0.85 1 1.19
MH 32.88 33.56 61.16 0.91 0.14 0.98 0.11 0.23

Rejection 32.66 33.59 61.24 0.90 0.16 0.98 0.98 0.09

4 Gibbs 20.10 39.95 60.27 0.73 4.19 0.93 1 20.25
MH 20.10 39.95 60.27 0.95 4.12 0.96 0.22 0.24

Rejection 20.10 39.95 60.27 0.95 4.04 0.97 1 0.14

32 Gibbs � � � � � � � �
MH 19.94 40.05 60.07 0.94 32.62 0.96 0.55 0.24

Rejection 19.94 40.05 60.07 0.94 32.59 0.95 1 0.18

100 0.1 Gibbs 19.50 44.97 58.58 0.67 0.18 0.91 1 3.75
MH 18.82 45.31 58.30 0.94 0.10 0.97 0.07 0.51

Rejection 19.09 45.21 58.57 0.94 0.10 0.98 0.98 0.09

4 Gibbs 19.93 40.01 60.04 0.74 4.05 0.94 1 99.10
MH 19.93 40 60.04 0.95 4.03 0.95 0.13 0.52

Rejection 19.93 40.01 60.04 0.95 3.97 0.96 1 0.10

32 Gibbs � � � � � � � �
MH 20.02 39.99 59.99 0.95 32.18 0.95 0.36 0.52

Rejection 20.02 39.99 59.99 0.95 32.19 0.96 1 0.08
aPosterior κ mode denotes the mode as described in section 4.3. Coverage denotes the proportion of

replications in which the true κ fell within the 95 % HDI.
bAcceptance ratio. For Gibbs sampling, this is always 1. For Metropolis-Hastings, Qacc/Q is given.

For the rejection method, this is Q/Qcan.
cMean Computation Time of one replication in seconds.
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Coverages for κ were adequate, although the Gibbs sampler once again performed badly.
The MH and rejection sampler did perform well, although the rejection method seemed
slightly more prone to coverages that are too high. These coverages in the range .95-1
indicate that the HDI would be chosen too wide so that the true value falls within
the HDI more often than expected. Finally, computational time increased slightly with
three groups for all methods.

5 Discussion

This paper presented three di�erent MCMC approaches for Bayesian estimation of the
mean directions µj of multiple groups of circular data with common but unknown con-
centration κ. These approaches were based on existing knowledge on Bayesian analysis
of circular data that which could be used for analysis of a single group of circular data.
Additionally, a systematic investigation of the performance of the three approaches was
performed.

Comparing the methods, clear di�erences became apparent. The Gibbs sampler
encountered many problems, among which were bias, undesirable coverages, long com-
putational time, and complexity in application. The MH method performed adequately,
but it does not show desirable acceptance rates for large datasets with small concentra-
tion when using the current χ2 proposal density. In addition, it did not seem to handle
extremely concentrated data well. The rejection algorithm by Forbes and Mardia (2014)
was found to be the most promising of the MCMC-methods available in the literature
at present, due to fast computational speed, fast convergence and adequate coverage.

The model developed here is still limited in terms of scope; it provides a basic
between-subjects design for multiple groups of circular data, but extensions of this model
such as a between-within-design or the inclusion of covariates have yet to be developed.
Although in the present study the rejection algorithm was the most advantageous, a
general MH algorithm may prove more �exible for such extended models due to its more
direct approach. It is expected that extending the MCMC methods provided here to
more complex models will exacerbate any issues regarding acceptance rates in di�erent
ways, so it remains to be seen which method will perform best after such an extension.

This study is also limited to the assumption that the data follows the von Mises dis-
tribution. It is expected that a large chunk of the circular data encountered in practice
will follow this distribution. Groundwork for a general method for any kind of circular
distribution was provided by Bhattacharya and Sengupta (2009) and employs impor-
tance sampling. Because importance sampling relies on de�ning an additional density
to approximate normalising constants, simpler methods such as the ones presented here
are preferred where possible.

In sum, the intrinsic approach o�ers a promising and �exible approach to Bayesian
analysis of circular data, and its extension to a model with J multiple groups is an
important �rst step towards developing �exible modeling of circular data in between-
subjects designs.
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